Productivity Analysis of Japanese Enterprise Software Development Projects

Masateru Tsunoda
Nara Institute of Science and Technology
Kansai Science City, 630-0192 Japan
masate-t@is.naist.jp

Akito Monden
Nara Institute of Science and Technology
Kansai Science City, 630-0192 Japan
akito-m@is.naist.jp

Hiroshi Yadohisa
Doshisha University
1-3 Miyakodani, Tatara, Kyotanabe, Kyoto, 610-0394 Japan
hyadohis@mail.doshisha.ac.jp

Nahomi Kikuchi
Software Engineering Center
Information-technology Promotion Agency
2-28-8, Hon-Komagome, Bunkyo-ku, Tokyo, 113-6591 Japan
n-kiku@ipa.go.jp

Ken-ichi Matsumoto
Nara Institute of Science and Technology
Kansai Science City, 630-0192 Japan
matumoto@is.naist.jp

ABSTRACT
To clarify the relation between controllable attributes of a software development and its productivity, this paper experimentally analyzed a software project repository (SEC repository), consisting of 253 enterprise software development projects in Japanese companies, established by Software Engineering Center (SEC), Information-technology Promotion Agency, Japan. In the experiment, as controllable attributes, we focused on the outsourcing ratio of a software project, defined as an effort outsourced to subcontract companies divided by a whole development effort, and on the effort allocation balance among development phases. Our major findings include both larger outsourcing ratio and smaller upstream process effort leads to worse productivity.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – Cost estimation, productivity; K.6.1 [Management of Computing and Information Systems]: Project and People Management – Strategic information systems planning;

General Terms: Management, measurement, economics

Keywords
Software productivity, subcontract, upstream process, custom software, software project repository

1. INTRODUCTION
Estimation of software development effort is required throughout a software development lifecycle to set up, evaluate and revise a project plan including resource allocation and scheduling. Software productivity is one of the key factors in drawing up the early effort estimation in a project, although the productivity greatly varies according to project attributes such as business area, application type, programming language, team size and experience, etc [8]. Past researches have shown that some attributes do affect the productivity [2][7][8][9]. Unfortunately, many of these attributes, e.g. business area and programming language, are usually not controllable by a software development company.

This paper focuses on the project attributes that are controllable by a software development company. Through the analysis of the year 2005 version of the SEC repository consisting of 253 samples of enterprise software development in Japanese companies, this paper seeks to clarify the relation between project attributes and software development productivity. The repository has been developed and maintained by Software Engineering Center (SEC), Information-technology Promotion Agency, Japan [10].

In the analysis, as controllable project attributes, this paper focuses on the outsourcing ratio of a software project, and on the effort allocation balance among development phases. While high outsourcing ratio is one of the major distinctive properties of Japanese enterprise software development, there is no past researches focused on the relation between outsourcing ratio and productivity of software development in Japan.

The reminder of this paper first describes details of the SEC repository we used (Section 2). Next, describes analyses we conducted to clarify the relation between project attributes and productivity (Section 3). Afterward, related works are described (Section 4); and in the end, conclusions and future topics will be shown (Section 5).

2. THE SEC REPOSITORY
The year 2005 version of the SEC repository consists of 1009 software projects held in 15 Japanese companies. These projects are custom enterprise software, which is the majority in Japan [4][5]. Each project is characterized by about 400 attributes (metrics); however, 87.7% of them were unrecorded on average. Since the project size is a necessary attribute to calculate the productivity, we excluded projects having missing value in the function...
point (FP) attribute from our analysis. Also, we excluded mainte-
nance projects and enhancement projects, and focused to new
development projects and re-development projects because main-
tenance/enhancement processes are often very different from
new/re-development processes. As a result, 253 projects were
selected for the analysis. All these projects were waterfall process
development.

Productivity is defined as FP divided by (total) development effort
(person-hour). FP methods consist of IFPUG (34%), SPR (26%),
NESMA (3%), others (31%), and missing (5%). Productivity of
the upper quartile project is about 3.3 times larger than the lower
quartile project. Because of biased distribution of productivity and
other metrics, we used the median of metrics instead of the aver-
age in our analysis. We also used non-parametric tests in the
analysis.

In the analysis, we mainly focused to two factors to analyze pro-
ductivity. One is the outsourcing ratio, defined as an effort out-
sourced to subcontract companies divided by a whole develop-
ment effort. The other is the upstream process ratio, defined as the
sum of requirement analysis process effort and design process
effort divided by a whole development effort. In many cases, these
two factors are controllable by a software development company.

3. PRODUCTIVITY ANALYSIS

There are several factors that may influence software productivity.
One of the most considerable factors is the project size [1][3]
since development processes (e.g. human resource allocation)
vary according to the project size. Therefore, we also focus to the
FP, which is one of project size metrics, in addition to the out-
sourcing ratio and the upstream process ratio.

3.1 Project Size

Before focusing on the outsourcing ratio and the upstream process
ratio, we analyzed the influence of FP (project size), which is the
most basic factor in productivity analyses.

In this analysis projects were classified into three groups by their
FP. Projects whose FPs are equal to or less than lower quartile
were classified as the “low” group. Projects whose FPs are equal
to or greater than upper quartile were classified into the “high”
group. The rest projects were classified into the “middle” group.

To visually explore the difference in productivity among three
groups, boxplots were used. Figure 1 shows boxplots of produc-
tivity for the three project groups (FP=low, FP=middle, and
FP=middle) plus “overall” group for whole projects. Circles indi-
cate outliers, and stars indicate extreme outliers. Upper quartile of
FP is about 4.1 times larger than lower quartile. The figure shows
there are several high productivity projects in the low group. Me-
dian of productivity of the low group is about 1.4 times larger
than the high group. Median of productivity of the middle group
is only about 1.1 times larger than the high group. Using Mann-
Whitney U test, we confirmed that the difference of productivity
is statistically significant at the 0.05 level between the low group
and the high group. P-values are shown in the column “All” of
Table 1. The column “Group 1” and the column “Group 2” indi-
cate paired group when testing. Italic indicates p-value < 0.05.

Next we excluded the influence of outsourcing ratio since there
was a high correlation between FP and outsourcing ratio (Spear-
man’s rank correlation was 0.51). Figure 2 shows boxplots for
projects whose outsourcing ratios were zero. Median of produc-
tivity is almost same among the three groups. The differences in
productivity among the three groups are not statistically signifi-
cant at all. P-values are shown in the column “Outsourcing ratio is
zero” of Table 1.

Above all, the SEC repository showed that the project size alone
do not directly influence the productivity. However, it can be said
that large size projects have high outsourcing ratio; and thus, it
indirectly leads to worse productivity.

3.2 Outsourcing Ratio

Figure 3 shows boxplots of productivity for three project groups
classified by the outsourcing ratio. (Note that the number of pro-
jects of the low group is different from the high group because
there are many projects whose outsourcing ratios are zero and all
of them are classified as the lower quartile group.) The figure shows there are high productivity projects in the low group. Median of productivity of the low group is about 2.6 times larger than the high group. The differences of productivity are statistically significant at the 0.05 level among the three groups. P-values are shown in the column “All” of Table 2.

Next we excluded the influence of FP. As described in Section 3.1, high FP projects tend to have high outsourcing ratio. Figure 4 shows boxplots for projects whose FPs are in the “middle” group. The differences in productivity are statistically significant at the 0.05 level between the high group and other groups. P-values are shown in the column “Function point is middle” of Table 3. Similarly, Figure 7 is boxplots of projects whose outsourcing ratio is zero. The differences in productivity are not statistically significant at the 0.05 level among the three groups. P-values are shown in the column “Outsourcing ratio is zero” of Table 3. Although there was no strong significance among these groups, significance p=0.083 (< 0.10) was observed between middle and high group.

From these results, high upstream process ratio alone has some influence to the productivity. This suggests that high upstream process ratio may avoid additional effort (reworks) on downstream processes.

4. RELATED WORK
Maxwell et al. [8] and Premraj et al. [9] analyzed the influence of the business sector type on productivity, using Finnish software development project dataset collected by Software Technology Transfer Finland (STTF). Lokan et al. [6] also showed productivity analysis focused on the business sector using a dataset of International Software Benchmarking Standards Group (ISBSG). In these researches, projects in the manufacturing sector have the highest productivity, and projects in the banking/Insurance sector have the lowest productivity. Same tendency was observed in the SEC repository.

Blackburn et al. [2] analyzed the influence of requirement analysis process ratio on the productivity. They found that requirement analysis process ratio leads to higher productivity of coding process. Our finding about the influence of upstream ratio follows their result.

5. CONCLUSIONS
We analyzed the influences of outsourcing ratio and upstream process ratio on the development productivity of Japanese enterprise software development projects. We found that both lower outsourcing ratio projects and higher upstream process ratio pro-
jects have significantly higher productivity. Our future work is to analyze the influences of other factors thoroughly.

6. ACKNOWLEDGMENTS

The authors would like to thank Software Engineering Center, Information-technology Promotion Agency, Japan for offering the SEC Repository. This work is supported by the EASE (Empirical Approach to Software Engineering) project of the Comprehensive Development of e-Society Foundation Software program of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

7. REFERENCES

