ギターの演奏情報の抽出と分析

4G-5

中西 正洋 門田 晓人 松本 健一 井上 克郎
奈良先端科学技術大学院大学 情報科学研究科

1. まえがき

近年、カラオケ、WWWページのBGM、シンセサイザ等で、MIDI(Musical Instrument Digital Interface)データが広く使用されている。しかし、質の高いMIDIデータを作成することは容易ではない。楽譜の情報だけから作成したMIDIデータは、無機質で非人間的な演奏になる。質の高い人間的なMIDIデータを作成するためには、厳密なデータの修正作業が必要となる。この作業では、データ中の音符の強さや長さを少しずつ変更する必要があり、MIDIデータや楽譜に精通したエキスパートでも多大な時間を要する。

本研究では、様々な音楽で幅広く使われているギターに注目し、楽譜通りに入力されたMIDIデータのうち、ギターバートを生演奏に近い演奏データに自動変換することを目的とする。従来、ピアノの演奏情報に関する研究が行われてきたが[1][3][4]、ギターは、ピアノなどと異なり同音異弦が存在するため、弦を考慮した演奏情報を扱う必要がある。

本稿では、まず、シンセギターによる生演奏を記録したMIDIデータから、異弦同音を考慮した演奏特性を抽出する方法について述べる。次に、楽譜通りのMIDIデータに対して、演奏特性を抽出することにより、MIDIデータを自動的に生演奏らしいものに変換する方法について述べる。最後に、これらの方法をもとに試作したシステムを用いて、提案手法の有効性を確認した実験について述べる。

2. ギターによる演奏の特徴

ギターを用いた演奏の特徴は、ギターの弦と人間の指の制約による特徴、奏法による特徴、エフェクタや弦による音色による特徴がある[2]。

特にギターの弦と人間の指の制約による特徴が生演奏らしいMIDIデータを作成する上で重要となると考えられる。ギターの弦と人間の指の制約により、同じ音符に対しても、音の強さや長さが微妙に異なるからである。

ギターの弦と人間の指の制約による特徴は、(1) 标準的なギターでは、弦が6本であるため、同時発音数が6音であること、(2) 弦をはじめから、消音操作や減衰しない限り、音が鳴りつづけること、(3) 人間の指が広げられる範囲内に限り限りに多大な影響を与えること、である。

Extracting and analyzing a feature of playing the guitar

Masahiro Nakanishi, Akito Monden, Ken-ichi Matsumoto, Katsuro Inoue
Graduate School of Information Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0101, Japan {masahi-n, akito-m, matumoto, k-inoue}@is.aist-nara.ac.jp

図1: 提案するシステム

本研究では、上記の(2)，及び，(3)を人間による演奏の演奏特性として，実際の生演奏から抽出し，楽譜通りのMIDIデータにその演奏特性を適用することにより，生演奏らしいMIDIデータに変換する。

3. 提案システム

図1は試作システムの概要である。試作システムは、楽譜通りのMIDIデータと人間による演奏から作成したMIDIデータを入力とし，生演奏に近いMIDIデータを出力する。

試作システムは演奏特性抽出部と演奏特性適用部から構成される。演奏特性抽出部においては，入力となる演奏者の個人別の演奏の特性を抽出し，データベースに蓄積する。演奏特性の抽出は，シンセギターを用い，演奏者の実際の演奏をMIDIデータに変換し，特徴を抽出する。

抽出する演奏特性は2種類ある。一つは，演奏された各音に対して，直前の音に対する相対的な音程差，どの弦が鳴かかったかを示す弦情報，ベロシティである（図2中の(a)）。もう一つは，繰り返された音の音程を求める音程差を繰り返されないまでの音から構成される音程差のパラメータは無視した。

図2: 演奏特性抽出部の概要
データベース適用部においては、データベースに蓄積されている演奏データに蓄積されている、直接の音に対する相対的な音階、弦情報、ベロシティ、及び、繰り返しパターンを楽譜通りのMIDIデータに適用する。具体的には、楽譜通りのMIDIデータ中の音符を曲の開始から1音ずつ順に処理していく、その際、データベースの中から、できるだけ高い適合率のある同じパターンのフレーズを検索し、ベロシティに反映させていく（図3）。

4. 評価実験
4.1 実験の手続き
(1) データベースの作成：2人の演奏者（演奏者A、B）のギター演奏を元に、データベースを作成した。演奏者Aは、Rockのジャンルを好みギターの経験は10年程度である。演奏者Bにおいては、ピックを用いた演奏によるデータベースAと、指弾きによるデータベースA'の2種類を作成した。演奏者Bは、Fusionのジャンルを好みギターの経験は10年程度である。演奏者Bに対しては、ピックを用いた演奏によるデータベースBを作成した。
(2) 元とMIDIデータの作成：楽譜通りに入力したMIDIデータは、ギター用に編曲されたクラシックの曲であり、(A)Allegretto、(D.Aguado作曲、(イ)Estudio、F.Tárrega作曲、(ロ)Estudio、N.Coste作曲の3曲である。
(3) MIDIデータの変換：本システムを評価するために、アーノの各曲に対して、次の5個のMIDIデータを用意した。1楽譜通りに打ち込んだMIDIデータ、2音楽モンの音を強調（ベロシティ）を変える、34から94間を伸ばした。3データベースAを適用したもの、4データベースA'を適用したもの、5データベースBを適用したもの。
(4) ギター演奏の評価
3名の大学院生に対して(3)で用意したMIDIデータを聴いてもらい、演奏演奏のしかしさの順に1から5の番号をつけたもの。また、各々の曲に対して、なぜそのように1から5の順序をつけたのかの判断理由を記すための欄を3箇所用意し、自由に記入してもらった。
4.2 実験結果
表1: 被験者による評価結果

<table>
<thead>
<tr>
<th>曲/被験者</th>
<th>リズム</th>
<th>ランダム</th>
<th>ア</th>
<th>B適用</th>
<th>A適用</th>
</tr>
</thead>
<tbody>
<tr>
<td>ア</td>
<td>a</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>c</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>イ</td>
<td>a</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>b</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>ウ</td>
<td>a</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>b</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

図3: 演奏特性適用部の概要

本稿においては、特にギターに注目し、楽譜から直接打ち込んだMIDIデータを演奏させるための手法を提案し、システムを試作し評価実験を行った。実験結果により、本システムを適用することで、楽譜通りに打ち込んだものよりも人間らしい感じが見られると評価が得られた。また、データベースによっては強弱がつき過ぎるという点が今後の課題であることが分かった。

謝辞
本研究は、奈良先端科学技術大学大学 98年度情報科学研究科研究費補助金の援助による。

参考文献