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ABSTRACT 

Background: Any software project dataset sometimes includes 

outliers which affect the accuracy of effort estimation. Outlier 

deletion methods are often used to eliminate them. However, there 

are few case studies which apply outlier deletion methods to anal-

ogy-based estimation, so it is not clear which method is more 

suitable for analogy-based estimation. Aim: Clarifying the effects 

of existing outlier deletion methods (Cook’s distance based dele-

tion, LTS based deletion, k-means based deletion, Mantel’s corre-

lation based deletion, and EID based deletion) and our method for 

analogy-based estimation. Method: In the experiment, outlier 

deletion methods were applied to three kinds of datasets (the 

ISBSG, Kitchenham, and Desharnais datasets), and their estima-

tion accuracy evaluated based on BRE (Balanced Relative Error). 

Our method eliminates outliers from the neighborhoods of a target 

project when the effort is extremely different from other neigh-

borhoods. Results: Deletion methods which are designed to apply 

to analogy-based estimation (i.e. Mantel’s correlation based dele-

tion, EID based deletion, and our method) showed stable perfor-

mance. Especially, only our method showed over 10% improve-

ment of the average BRE on two datasets. Conclusions: It is rea-

sonable to apply deletion methods designed for analogy-based 

estimation, and more preferable to apply our method to analogy-

based estimation. 

Categories and Subject Descriptors 

D.2.9 [Software Engineering]: Management – Cost estimation, 

K.6.1 [Computing Milieux]: Project and People Management –

Staffing 

General Terms 

Management, Measurement, Economics, Experimentation. 

Keywords 

Case based reasoning, effort prediction, abnormal value, project 

management, productivity. 

1. INTRODUCTION 
To achieve success for a software development project, the devel-

opment effort must be accurately estimated, so many quantitative 

estimation methods have been proposed [2][24][27]. Recently, 

analogy-based estimation [26] has gained attention, and many 

proposals and case studies have been reported 

[9][10][19][28][29]. Analogy-based estimation selects projects 

(neighborhood projects) which are similar to the estimated project 

from a past project dataset, and estimates effort based on the simi-

lar projects’ effort. One of the advantages of analogy-based esti-

mation is that estimation results are comprehensible for estimators 

such as project managers [29], because they can confirm the 

neighborhood projects used for estimation. Although ordinary 

estimation models such as a linear regression model estimate vari-

ous target projects’ effort using a model, analogy-based estimation 

does not make such a model, estimating effort only by neighbor-

hood projects’ effort. So analogy-based estimation can reflect the 

individuality of each target project in the estimation. 

A past project dataset sometimes includes project data which 

should not be used for estimation [25]. For example, projects 

where an exceptional amount of rework occurred have a larger 

effort than other projects of the same scale (atypical cases). Addi-

tionally, when the effort was inaccurately collected or recorded, 

the recorded effort is different from the actual effort (noisy cases). 

Both atypical cases and noisy cases should be eliminated from the 

dataset before estimating effort, because their effort is quite dif-

ferent from projects whose features are similar to them, and that 

lessens estimation accuracy. However, to identify these projects is 

not easy because the internal details of each project are usually 
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not recorded in the dataset. Even if such details can be grasped, it 

is difficult to settle the elimination criteria (For example, it is 

difficult to settle the criterion for an abnormal amount of rework). 

Statistical outlier deletion methods are often used to eliminate 

such projects (That is, such projects are treated as outliers). Outli-

er deletion methods identify projects as outliers when the values 

of specific variables are extremely large or a combination of the 

values of variables (e.g. the combination of effort, system size, 

and team size) is fairly different from values for other projects, 

and remove the outliers from the dataset. Cook’s distance is wide-

ly used as an outlier deletion method when applying linear regres-

sion analysis. In addition to Cook’s distance, some outlier dele-

tion methods for effort estimation [5][15][25] have been proposed. 

However, there are few case studies which apply outlier deletion 

methods to analogy-based estimation and compare their effects on 

analogy-based estimation. So, it is not clear which deletion meth-

od is more suitable for analogy-based estimation. 

In this research, we apply outlier deletion methods to analogy-

based estimation to compare their effects. Five types of outlier 

deletion methods (EID (Effort Inconsistency Degree) based dele-

tion [15], Mantel’s correlation based deletion [9], Cook’s distance 

based deletion, k-means based deletion [25], and LTS (Least 

trimmed squares) based deletion [25]) were applied to the ISBSG 

[8], Kitchenham [14] and Desharnais datasets [7], with develop-

ment effort estimated by analogy-based estimation. These datasets 

include data about many projects collected from software devel-

opment companies, and are widely used in many researches. 

Additionally, considering the characteristics of analogy-based 

estimation, we applied our outlier deletion method and compared 

its effect with others. In analogy-based estimation, when the vari-

ance of the actual effort of neighborhood projects is large, the 

estimation accuracy becomes low [23]. Our method identifies a 

project as an outlier when the effort of the project is significantly 

higher or lower than other neighborhood projects, and excludes it 

from the computation of estimated effort. The actual effort of 

neighborhood projects is normalized by robust Z-score computa-

tion [22], and when the normalized value is larger than a thresh-

old, the project is identified as an outlier. While existing deletion 

methods eliminate outliers from the entire dataset before estima-

tion, our method eliminates outliers from neighborhood projects. 

Below, Section 2 explains analogy-based estimation. Section 3 

explains outlier deletion methods, and Section 4 describes the 

experimental setting. Section 5 shows results of the experiment 

and discusses it, and Section 6 concludes the paper with a sum-

mary. 

2. ANALOGY-BASED ESTIMATION 
Analogy-based estimation originated with CBR (case based rea-

soning), which is studied in the artificial intelligence field. Shep-

perd et al. [26] applied CBR to software development effort esti-

mation. CBR selects a case similar to a current issue from a set of 

accumulated past cases, and applies the solution of the case to the 

issue. CBR assumes that similar issues can be solved by a similar 

solution. Analogy-based estimation assumes that similar neigh-

borhood projects (for example, with similar development size and 

programming languages) have similar effort, and estimates effort 

based on the neighborhood projects’ effort. Although ready-made 

estimation models such as COCOMO [2] can make estimates 

without a stored software project dataset, analogy-based estima-

tion cannot estimate without it. This is a weak point of analogy-

based estimation, but it can be overcome by using public datasets. 

Analogy-based estimation uses an m×n matrix as shown in Table 

1. In the matrix, Proji is i-th project, Metricj is j-th variable, xij is a 

value of Metricj of Proji, fpi is the development size (e.g. function 

point) of Proji, and yi is the actual effort of Proji. We presume 

Proja is the estimated project, and aŷ
 is the estimated value of ya. 

The analogy-based estimation procedure consists of the three 

steps described below. 

Step 1: Since each variable Metricj has a different range of values, 

this step normalizes the ranges from [0, 1]. The normalized value 

x´ij, is calculated from the value of xij by: 

 
   jj

jij

ij
MetricMetric
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x
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


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In this equation, max(Metricj) and min(Metricj) denote the maxi-

mum and minimum value of Metricj respectively. 

Step 2: To find projects which are similar to the estimated project 

Proja (i.e. identifying the neighborhood projects), the distance 

between Proja and other projects Proji is calculated. Although 

various measures (e.g. a measure directly handling nominal varia-

bles) have been proposed [1], we applied the Euclidean distance 

measure because it is widely used [28]. In this measure, a short 

distance indicates that two projects are similar. The distance 

Dist(Proja, Proji) between Proja and Proji is calculated by: 
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Step 3: The estimated effort aŷ
 of project Proja is calculated from 

the actual effort yi of k neighborhood projects. While the average 

of the neighborhood projects’ effort is generally used, we adopted 

a size adjustment method, which showed high estimation accuracy 

in some studies [10][19][29]. The size adjustment method as-

sumes that the effort yi is s times (s is a real number greater than 

0) larger when the development size fpi is s times larger, and the 

method adjusts the effort yi based on the ratio of the estimated 

project’s size fpa and the neighborhood project’s size fpi. The 

adjusted effort adjyi is calculated by equation (3), and estimated 

effort aŷ
 is calculated by equation (4). In equation (4), Simpro-

jects denotes the set of k neighborhood projects which have top 

similarity with Proja. 

Table 1. Dataset used by analogy-based estimation 

 Effort Size Metric1 Metric 2 … Metric j … Metric n 

Proj1 y1 fp1 x11 x12 … x1j … x1n 

Proj2 y2 fp2 x21 x22 … x2j … x2n 

… … … … …  …  … 

Proji yi fpi xi1 xi2 … xij … xin 

… … … … …  …  … 

Projm ym fpm xm1 xm2 … xmj … xmn 
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3. OUTLIER DELETION METHOD  
An outlier deletion method examines whether a case (project) in a 

dataset is an outlier or not, and eliminates it from the dataset when 

it is identified as an outlier. When software development effort is 

estimated, Cook’s distance based deletion is widely applied before 

building a linear regression model to eliminate outliers (e.g., [18]). 

Although Cook’s distance based deletion is used when a linear 

regression model is built, we also applied it to analogy-based 

estimation, because it is widely used in many effort estimation 

studies. 

Recently, a few outlier deletion methods suitable for analogy-

based estimation have been proposed. These methods are Man-

tel’s correlation based deletion [9] and EID based deletion [15]. 

We applied these methods to analogy-based estimation, to con-

firm their effects. Past studies have not compared their effects. In 

addition, we applied our method, neighborhood’s effort based 

deletion to compare with these methods. 

We also applied LTS (least trimmed squares) based deletion and 

k-means based deletion to analogy-based estimation. Although 

Seo et al. [25] confirmed they were effective toward effort estima-

tion by neural network, it is not clear whether these methods are 

effective or not toward analogy-based estimation. The outlier 

deletion methods used in our research are explained below. 

3.1 Cook’s Distance Based Deletion 
Cook’s distance based deletion is used with multiple linear regres-

sion analysis, and identifies an outlier when the case greatly varies 

the coefficient of the regression model. Cook’s distance indicates 

how much the residual of all cases varies when a certain case is 

omitted from model building. A large Cook’s distance means the 

case greatly affects the model. A case is eliminated from the da-

taset when Cook’s distance is larger than 4 / n (n is the number of 

cases in the dataset). 

3.2 LTS Based Deletion 
LTS (Least trimmed squares) based deletion performs multiple 

regression analysis, and a case which has a large residual is re-

garded as an outlier [25]. LTS method is one of the robust regres-

sion models. While the ordinary regression model builds a model 

to minimize the residual sum of the squares, LTS uses up to h-th 

residuals (n / 2 < h < n, n is the number of cases) in ascending 

order, and minimizes the residual sum of squares to build a model. 

LTS Based Deletion sets h as 0.75n, and 0.25n cases are removed 

from the dataset, as shown in Table 2. 

3.3 k-means Based Deletion 
k-means based deletion identifies an outlier based on a clustering 

result from the k-means method [25]. The k-means method divides 

data into k clusters, and similar cases are assigned to the same 

cluster. Data is normalized by equation (1) before clustering, and 

the value k is set before clustering. k-means based deletion adopts 

k which minimizes the average silhouette value. The silhouette 

value is an index which shows whether cases are properly clus-

tered or not, and it is calculated from the distance of each case 

from the cluster in which the case is included, and the distance 

from other clusters. The value range of the silhouette value is [-1, 

1], and a larger value means that the case is properly clustered. As 

illustrated in Figure 1, k-means based deletion removes a case 

when its silhouette value is less than 0, or its cluster has two or 

less cases. 

3.4 Mantel’s Correlation Based Deletion 
Mantel’s correlation based deletion identifies an outlier when a 

set of values of independent variables is similar, but the value of 

the dependent variable is not similar to other cases. The method 

was originally proposed in the Analogy-X method [9] designed 

for analogy-based estimation. The Analogy-X method is (1) deliv-

ering a statistical basis, (2) detecting a statistically significant 

relationship and rejecting non-significant relationships, (3) 

providing a simple  mechanism for variable selection, (4) identify-

ing an abnormal data point (project) within a dataset,  and (5) 

supporting sensitivity analysis that can detect spurious correla-

tions in a dataset. We applied function (4) and (5) as an outlier 

deletion method. 

While an ordinary correlation coefficient such as Pearson’s corre-

lation denotes the strength of relationship between two variables, 

Mantel’s correlation does this between two set of variables (i.e. a 

set of independent variables and a dependent variable). Mantel’s 

correlation clarifies whether development effort (the dependent 

variable) is similar or not, when project attributes such as devel-

opment size or team size (a set of independent variables) are simi-

lar. To determine Mantel’s correlation, each case of Euclidean 

distance based on the independent variables and the Euclidean 

distance based on the dependent variable is calculated, and dis-

tance matrixes of the distances are made, as shown in Figure 2. 

Then the correlation coefficient of two matrixes is calculated. 

Function Point

Effort

Outlier

Silhouette value < 0

Outlier

 

Figure 1. An example of outliers in k-means based deletion 

 

Table 2. An example of outliers in LTS based deletion 
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0.25n cases 

are removed. 



Based on the Jackknife method, Mantel’s correlation based dele-

tion identifies an outlier when the case greatly affects Mantel’s 

correlation. That means the case seriously ≤ distorts the relation-

ship between the dependent variable and independent variables. 

Mantel’s correlation based deletion identifies outliers by the fol-

lowing procedure. 

1. For all projects, Mantel’s correlation ri is calculated by ex-

cluding i-th project. 

2. Average of ri ( r ), and standard deviation of ri (rs) are cal-

culated ( r  is the jackknife estimator of Mantel’s correla-

tion). 

3. Leverage metric lmi, impact of i-th project on r  is calculat-

ed by the following equation: 

rrlm ii     (5) 

4. lmi is divided by rs, and when the value (standard score) is 

larger than 4, the project is eliminated from dataset. 

Before calculating Mantel’s correlation, data is normalized using 

equation (1). Dummy variables made from a categorical variable 

negatively affect Mantel’s correlation [9]. So we adopted within-

group matrix correlation as proposed in [9]. 

3.5 EID based deletion 
Using EID (Effort Inconsistency Degree), EID based deletion 

identifies an outlier when the case’s effort is inconsistent with 

similar cases’ one [15]. The method is designed to apply to analo-

gy-based estimation. EID based deletion identifies outliers by the 

following procedure. 

1. Neighborhoods of each case are identified by analogy-based 

estimation, using 10 fold cross-validation. 

2. Compute the relative error of effort between each case and 

its nearest case. The 25th percentile of the relative errors is 

set as the threshold ti. 

3. For each case in the neighborhoods, check whether Casem 

included neighborhoods of Caset has neighborhood Caset or 

not. That is, check whether Casem and Caset are similar to 

each other. Table 3 shows an example of mutually similar 

cases. 

4. When Casem and Caset is similar to each other, and Casem is 

d-th case similar to Caset in the neighborhoods, EID of 

Casem is calculated by the following equation: 


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  (6) 

In the equation, EIDm is EID of Casem, ti is threshold, yt is 

effort of Caset, and ym is effort of Casem. 

5. Repeat step 1 to 4 20 times, and cases are removed when 

their EID is greater than the 90th percentile of the whole 

EID. 

3.6 Neighborhood’s effort based deletion 
Our method, neighborhood’s effort based deletion, identifies an 

outlier when the effort of a project is much higher or lower than 

other neighborhood projects. As stated in section 2, the procedure 

of analogy-based estimation consists of range normalization (step 

1), neighborhood projects selection (step 2), and estimated effort 

computation (step 3). When the effort of neighborhood projects is 

not homogeneous in step 2, estimation accuracy becomes low [23]. 

Focusing on this issue, our method identifies an outlier in step 2. 

Analogy-based estimation assumes when the characteristics (inde-

pendent variables’ values) of project are similar, the effort (de-

pendent variable’s value) is also similar. Our method treats a pro-

ject as an outlier when the project does not fit this assumption. 

To identify an outlier, the effort of each neighborhood project is 

compared to the median of the neighborhood projects’ efforts. 

However, when the variance of the neighborhood projects’ efforts 

is large, each project’s deviation from the median effort is also 

large. So each neighborhood’s effort is standardized before the 

comparison. Generally, Z-score computation is applied to stand-

ardize values. Although Z-score computation assumes a normal 

distribution, the distribution of neighborhood projects’ effort may 

not always be a normal distribution. To solve this problem, our 

method uses robust Z-score computation [22] which does not 

assume a normal distribution. Robust Z-score computation uses 

the median and interquartile range instead of the average and 

standard deviation. 

Our method eliminates outliers from k neighborhood projects as 

follows. A neighborhood project’s effort is denoted by yi. Note 

that yi signifies size adjusted effort (adjyi) when using the size 

adjustment method. 

1. Median of yi (M) and interquartile range of yi (IQR) is calcu-

lated. 

Table 3. An example of mutually similar cases 

    
Neighborhoods 

 
Effort … 

 
1 … d … 

        

Caset yt … 
 

… … Casem … 

… … … 
 

… … … … 

Casem ym … 
 

… Caset … … 

… … … 
 

… … … … 

 

 

Function 

Point

Team 

Size

A

B

C

A B C

Effort

B 0.23

C 0.51 0.36

D 0.63 0.44 0.12

A B C

D

D

B 0.21

C 0.54 0.32

D 0.66 0.43 0.13

A B C

Distance matrix Distance matrix
 

Figure 2. An example of distance matrix used for Mantel’s 

correlation computation 

 



2. Standardized effort y’i is calculated by the following equa-

tion (robust Z-score [22]): 

NIQR

My
y i

i


    (7) 

In the equation, NIQR (normalized IQR) is equal to 0.7413 

IQR. It is equivalent to standard deviation on normal distri-

bution (When the average is 0 and standard deviation is 1, 

IQR of a normal distribution is 1.34898. Therefore, multi-

plying IQR by reciprocal of 1.34898 is equivalent to stand-

ard deviation).  

3. A project is identified as an outlier and eliminated when the 

absolute value of y’i is greater than the threshold th (i.e. 

when the deviation from the median M is greater than th 

times NIQR). The estimated effort 
aŷ  is calculated by the 

following equation: 

dk

y
y

projectsEliminatedh h

a



 ˆ    (8) 

In this equation, Eliminatedprojects denotes a set of k 

neighborhood projects excluded d outlier projects. We set th 

as 1.65 (one sided 5% of standard normal distribution). 

Some studies have pointed out that when the productivity (devel-

opment size / effort) of neighborhood projects is not homogene-

ous, the estimation accuracy with size adjustment method be-

comes low [10][19]. Our method with size adjustment aims to 

eliminate outliers based on productivity. When size adjustment is 

used, our method eliminates a project whose adjusted effort adjyi 

is much higher or lower. From equation (3), adjyi is calculated by 

multiplying the estimated project’s size fpa by the reciprocal 

productivity yi / fpi (yi is the effort of a neighborhood project, and 

fpi is its development size). fpa is same for all neighborhood pro-

jects, and therefore it is regarded as a constant. Therefore, adjyi is 

regarded as productivity in our method. 

To identify an outlier, Mantel’s correlation based deletion, EID 

based deletion, and our method focus on cases whose independent 

variables are similar to each other, but dependent variable is dif-

ferent from each other. A major difference between our method 

and other methods is that our method is designed to eliminate 

outliers after selecting neighborhood projects, while other meth-

ods are designed to eliminate outliers from the entire dataset be-

fore estimation. We examined the effect of the difference on esti-

mation accuracy. An advantage of our method is that it is simpler 

(less calculation) than other outlier deletion methods.  

4. EXPERIMENT 
To evaluate outlier deletion methods, we compared the estimation 

accuracy of analogy-based estimation when each outlier deletion 

method is applied. We used the ISBSG [8], Kitchenham [12], and 

Desharnais datasets [7]. We assumed the estimation point is at the 

end of the project planning phase. So, only variables whose values 

were fixed at the point were used as independent variables. We 

did not compare the deletion methods with case selection methods 

based on brute-force search or heuristic algorithms [11], because 

they are rather time-consuming, and therefore their availability is 

limited. 

4.1 Datasets 
ISBSG dataset is provided by the International Software Bench-

mark Standard Group (ISBSG), and it includes project data col-

lected from software development companies in 20 countries [8]. 

The dataset (Release 9) includes 3026 projects which were carried 

out between 1989 and 2004, and 99 variables are recorded. The 

ISBSG dataset includes low quality project data (Data quality 

ratings are also included in the dataset). So we extracted projects 

based on the previous study [17] (Data quality rating is A or B, 

function point was recorded by the IFUPG method, and so on). 

Also, we excluded projects which included missing values (list-

wise deletion), because analogy-based estimation and some outlier 

deletion methods cannot treat a dataset including missing values. 

As a result, we used 593 projects. The independent variables used 

in our experiment are the same as the previous study [17] (unad-

justed function point, development type, programming language, 

and development platform). Development type, programming 

language, and development platform were transformed into dum-

my variables (e.g. if the variable has n categories, it is transformed 

into n – 1 dummy variables), because they are nominal scale vari-

ables. 

There is a bit of a debate over the acceptable use of cross-

company datasets such as ISBSG dataset, because due to the dis-

parate collection methods of different organizations, it is possible 

that cross-company datasets may have some inconsistencies. To 

lessen the risk, projects which had been collected by almost same 

collection methods were extracted based on the previous study 

[17]. Barbara et al. [13] pointed out using cross-company dataset 

is effective for some companies. 

The Kitchenham dataset includes 145 projects of a software de-

velopment company, shown by Kitchenham et al. in their paper 

[12]. We selected 135 projects which do not include missing val-

ues. Three variables (duration, adjusted function point, develop-

ment type) were chosen as the independent variables, and inade-

quate variables for effort estimation (e.g. estimated effort by a 

project manager) were eliminated. Development type was trans-

formed into dummy variables. 

The Desharnais dataset includes 88 projects in 1980’s, collected 

from a Canadian company by Desharnais [7]. The dataset is avail-

able at the PROMISE Repository [3]. We used 77 projects which 

do not have missing values.  Eight variables (duration, number of 

transactions, number of entities, adjustment factor, unadjusted 

function point, programming language, years of experience of 

team, years of experience of manager) were used as independent 

variables, and development year and adjusted function point were 

not used. Programming language was transformed into dummy 

variables.  

4.2 Evaluation criteria 
To evaluate the accuracy of effort estimation, we used MRE 

(Magnitude of Relative Error) [6], MER (Magnitude of Error 

Standardized 

Effort

0-th thy'2 y'4 y'5y'3 y'1

Outlier Outlier

 

Figure 3. An example of outliers in neighborhood projects 

 



Relative to the estimate) [12], and BRE (Balanced Relative Error) 

[20]. Especially, MRE is widely used to evaluate effort estimation 

accuracy [29] (The residual sum of squares is not widely used for 

the evaluation). 

When x denotes actual effort, and  x̂  denotes estimated effort, 

each criterion is calculated by the following equations: 

x

xx
MRE

ˆ
     (9) 

x
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MER
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    (10) 
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A lower value of each criterion indicates higher estimation accu-

racy. Intuitively, MRE means error relative to actual effort, and 

MER means error relative to estimated effort. However, MRE and 

MER have biases for evaluating under and over estimation [4][16]. 

The maximum MRE is 1 even if an extreme underestimate occurs 

(For instance, when the actual effort is 1000 person-hour, and the 

estimated effort is 0 person-hour, MRE is 1). Similarly, maximum 

MER is smaller than 1 when an overestimate occurs. So we adopt-

ed BRE whose evaluation is not biased as is both MRE and MER 

[21], and we evaluated outlier deletion methods based mainly on 

BRE (MRE and MER were adopted for reference). We did not use 

Pred(25) [6] which is sometimes used as an evaluation criterion, 

because Pred(25) is based on MRE and it has also a bias for eval-

uating under estimation.  

4.3 Experimental Procedure 
Figure 4 shows the experimental procedure for the existing dele-

tion methods. In the experiment, the fit dataset is used to compute 

the estimated effort (regarded as past projects), and the test dataset 

is used as the estimation target (regarded as ongoing projects).  

Details are as follows: 

1. A dataset is randomly divided into two equal sets. One is 

treated as a fit dataset, and the other is treated as a test da-

taset.  

2. An outlier deletion method is applied to the fit dataset, to 

eliminate outliers from the fit dataset. 

3. To decide the neighborhood size k, estimation for the fit 

dataset is performed, changing k from 1 to 20 (The k was set 

to a maximum value of 20, since the k over 20 seldom 

showed high accuracy in a preliminary analysis). After esti-

mation, the residual sum of squares (It is widely used for es-

timation model selection [16]) is calculated, and the k which 

shows the smallest residual sum of squares is adopted. 

4. Estimation for the test dataset is performed. The k adopted 

in step 3 is used. 

5. Evaluation criteria are calculated for the actual effort and 

estimated effort of the test dataset. 

6. Steps 1 to 5 are repeated 10 times (As a result, 10 sets of fit 

dataset, test dataset, and evaluation criteria are made). 

Figure 5 shows the experimental procedure for our method. De-

tails are as follows: 

1. A dataset is randomly divided into two equal sets. One is 

treated as the fit dataset, and the other is treated as the test 

dataset. 

2. Estimation for the fit dataset is performed, changing k from 

1 to 20. After estimation, the residual sum of squares is cal-

culated, and the k which shows the smallest residual sum of 

squares is adopted. 

3. Estimation for the test dataset is performed with our method. 

The k adopted in step 2 is used. 

4. Evaluation criteria are calculated for the actual effort and 

estimated effort of the test dataset. 

5. Steps 1 to 4 are repeated 10 times. 

5. RESULTS AND DISCUSSION 
The experimental results are shown in Table 4, Table 5, and Table 

6. Each table shows the results for a different dataset. The values 

of the evaluation criteria are averaged for the 10 test datasets. The 

top row shows the evaluation criteria when an outlier deletion 

method is not applied. Other rows show the differences in the 

evaluation criteria when each outlier deletion method is applied. 

Negative values mean the evaluation criteria got worse when ap-

plying an outlier deletion method. When over 10% improvement 

of average BRE was observed, BRE was significantly improved 

(P-value was smaller than 0.05) at least on 5 of 10 test datasets 

(Wilcoxon signed-rank test was applied for each test dataset). We 

focused the differences of the evaluation criteria because our ma-

jor concern is comparative performance of each deletion method. 
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Figure 4. Experimental procedure for existing deletion meth-

ods 
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Figure 5. Experimental procedure for our method 

 



 Cook’s distance based deletion was effective on the Kitch-

enham dataset, but it negatively affected estimation accuracy 

on the ISBSG dataset. On the Kitchenham dataset, it 

achieved over 10% improvement on the average BRE and 

over 5% improvement on the median BRE. However, on the 

ISBSG dataset, the average BRE got over 5.0% worse. On 

the Desharnais dataset, the average BRE got 3.3% worse. 

 LTS based deletion negatively affected the Desharnais da-

taset. On the Desharnais dataset, the average BRE got over 

10% worse. On the ISBSG dataset, the average BRE got 

over 10% better, but the median BRE got over 5.0% worse. 

On the Kitchenham dataset, the average BRE got slightly 

(1.2%) worse. 

 k-means based deletion was effective on the Kitchenham 

dataset, but it negatively affected estimation accuracy on the 

ISBSG dataset. On the Kitchenham dataset, it achieved over 

10% improvement on the average BRE and 4.2% improve-

ment on the median BRE, but on the ISBSG dataset, the av-

erage BRE got over 15% worse. On the Desharnais dataset, 

the average BRE got slightly (1.4%) worse.  

 Mantel’s correlation based deletion was effective for the 

Kitchenham dataset. On the Kitchenham dataset, it achieved 

over 15% improvement on the average BRE and over 5% 

improvement on the median BRE. On the ISBSG dataset, 

the average BRE got 1.8% better, and the median BRE got 

1.2% better. On the Desharnais dataset, the average BRE got 

3.9% worse, and the median BRE got 2.2% worse. 

Table 4. Difference of evaluation criteria of each outlier deletion method (ISBSG Dataset) 

 Outlier deletion 

method 

Average 

MRE 

Median 

MRE 

Average 

MER 

Median 

MER 

Average 

BRE 

Median 

BRE 

 Not applied 166.9% 59.6% 91.3% 58.0% 210.4% 91.7% 

D
ifferen

ce 

Cook’s distance 12.2% -2.9% -19.1% -0.8% -6.0% -7.4% 

LTS 34.2% 0.1% -23.3% -4.0% 11.3% -6.6% 

k-means 0.7% -3.2% -20.0% -2.2% -17.9% -10.1% 

Mantel’s correlation 6.1% -0.7% -4.0% 1.3% 1.8% 1.2% 

EID 31.0% 0.9% -20.9% -1.2% 10.0% -1.7% 

Neighborhood’s effort 47.8% 5.6% -16.9% 0.3% 28.8% 4.9% 

 

 

Table 5. Difference of evaluation criteria of each outlier deletion method (Kitchenham Dataset) 

 Outlier deletion 

method 

Average 

MRE 

Median 

MRE 

Average 

MER 

Median 

MER 

Average 

BRE 

Median 

BRE 

 Not applied 104.4% 39.2% 51.9% 37.4% 120.5% 51.2% 

D
ifferen

ce 

Cook’s distance 11.4% 2.5% 3.1% 1.9% 13.3% 5.7% 

LTS -1.0% -0.9% -0.5% -1.8% -1.2% -1.2% 

k-means 10.8% 1.3% 1.5% 1.9% 11.6% 4.2% 

Mantel’s correlation 14.2% 2.2% 3.5% 2.5% 16.1% 5.4% 

EID 6.1% 1.4% -2.9% -0.3% 3.1% 1.3% 

Neighborhood’s effort 20.0% 2.9% -8.4% -0.9% 10.5% 2.6% 

 

 

Table 6. Difference of evaluation criteria of each outlier deletion method (Desharnais Dataset) 

 Outlier deletion 

method 

Average 

MRE 

Median 

MRE 

Average 

MER 

Median 

MER 

Average 

BRE 

Median 

BRE 

 Not applied 49.5% 31.1% 38.3% 30.2% 58.3% 36.0% 

D
ifferen

ce 

Cook’s distance -0.1% -2.9% -4.1% -1.4% -3.3% -4.9% 

LTS 1.6% -3.8% -15.8% -7.4% -10.9% -10.3% 

k-means -1.2% -0.5% -0.5% -0.5% -1.4% -0.5% 

Mantel’s correlation -3.2% -0.9% -1.8% -0.9% -3.9% -2.2% 

EID 0.8% -1.2% -2.0% -1.8% -0.8% -2.6% 

Neighborhood’s effort 0.9% 0.0% -2.0% -0.5% -1.1% -1.2% 

 

 



 EID based deletion was effective for the ISBSG dataset. On 

the ISBSG dataset, it achieved 10.0% improvement on the 

average BRE and the median BRE got slightly (1.7%) worse. 

On the Kitchenham dataset, the average BRE got 3.1% bet-

ter, and the median BRE got 1.3% better. On the Desharnais 

dataset, the average BRE got 0.8% worse, and the median 

BRE got 2.6% worse. 

 Our method was effective for the ISBSG dataset and the 

Kitchenham dataset. On the ISBSG dataset, it achieved over 

25% improvement on the average BRE and the median BRE 

got 4.9% better. On the Kitchenham dataset, the average 

BRE got over 10% better, and the median BRE got 2.6% 

better. On the Desharnais dataset, the average BRE got 1.1% 

worse, and the median BRE got 1.2% worse. 

As shown in Figure 6, deletion methods which are not designed to 

apply to analogy-based estimation (i.e. Cook’s distance based 

deletion, LTS based deletion, and k-means based deletion) were 

effective for one dataset, but they negatively affected estimation 

accuracy for the other two datasets. Therefore, it is better not to 

apply these methods to analogy-based estimation, because their 

performance is not stable.  

As shown in Figure 7, deletion methods which are designed to 

apply to analogy-based estimation (i.e. Mantel’s correlation based 

deletion, EID based deletion, and our method) positively affected 

two datasets. They negatively affected estimation accuracy for one 

dataset, but the impact was not very large. So, it is reasonable to 

apply these methods to analogy-based estimation, because their 

performance is stable. Especially, only our method showed over 

10% improvement of average BRE on two datasets, showing that 

applying our method to analogy-based estimation is more prefera-

ble. 

Experimental results show it is not appropriate to use only MRE 

to evaluate outlier deletion methods. Although outlier deletion 

methods often improved MRE in our experiment, they worsened 

MER at the same time. This means applying outlier deletion 

methods caused underestimation on some estimated projects. 

MRE has biases for evaluating underestimation, and therefore, 

MRE did not indicate the actual performance of the deletion 

methods. For example, Cook’s distance based deletion made the 

average MRE 12.2% better (median MRE 2.9% worse) for the 

ISBSG dataset. But the average MER was almost 20% worse, and 

the average BRE got 6.0% worse. Also, based on MRE, our meth-

od seems to have higher performance than Mantel’s correlation 

based deletion for the Kitchenham dataset. However, MER got 

worse by our method, and the average and median BRE indicated 

that Mantel’s correlation based deletion has higher performance 

than our method for the Kitchenham dataset. 

6. CONCLUSIONS 
In this research, we applied outlier deletion methods to analogy-

based software development effort estimation, and evaluated their 

effects. In addition, we compared them with our outlier deletion 

method. While existing deletion methods eliminate outliers from 

an entire dataset before estimation, our method does this after 

neighborhood projects are selected by analogy-based estimation. 

In our method, when the effort of the project is much higher or 

lower than other neighborhood projects, it is not used for estima-

tion. In the experiment, we estimated development effort using 

three kinds of datasets collected in software development compa-

nies. In the results, Cook’s distance based deletion, LTS based 

deletion, and k-means based deletion showed unstable perfor-

mance. Mantel’s correlation based deletion, EID based deletion, 

and our method showed stable performance. Only our method 

showed over 10% improvement of the average BRE for two da-

tasets. We conclude that it is reasonable to apply Mantel’s correla-

tion based deletion and EID based deletion to analogy-based es-

timation, and applying our method is more preferable. As future 

work, we will apply deletion methods to other datasets and com-

pare their effects to confirm the reliability of our research. Also, 

we will evaluate effects of deletion methods when missing data 

techniques are applied. 
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Figure 7. Average BRE of deletion methods which are de-
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