The Impact of Bug Management Patterns on Bug Fixing: A Case Study of Eclipse Projects

Masao Ohira
Wakayama Univ.

Ahmed E. Hassan
Queens Univ.

Naoya Osawa
Nara Institute of Science and Technology

Ken-ichi Matsumoto
Background

• An efficient bug management process (reports, assignment and fixing) is critical for the success of software projects.

• As the user base grows, some large open source projects receive a large number of bug reports.
Complex challenges to the bug management process

- Bug management process

- Understand a large amount of new bug reports
- Figure out if they are real bugs and whether they were reported in the past (i.e., duplicate bugs)
- Assign them to appropriate persons to fix the bugs quickly
 - 44% of bugs in the Eclipse project are reassigned to more than one developer [Jeong et al. 2009]
Related work

- Quality of bug reports
 - A good report helps developers to quickly find, replicate, and understand the bugs.
 - [N. Bettenburg et al. 2008] [S. Breu et al. 2010] [T. Zimmermann et al. 2010]

- Detection of duplicate bug reports
 - Users often report the same problems which were reported and fixed in the past.
 - [X. Wang et al. 2008] [N. Bettenburg et al. 2008] [C. Sun et al. 2010]

- Re-opening and reassigning of bug reports
 - A bug sometimes is be reopen and reassigned when it was assigned to an inappropriate developer.
 - [Anvik et al. 2007] [G. Jeong et al. 2009] [E. Shihab et al. 2010] [P. J. Guo et al. 2011]
Our focus:
Relations between the individuals

• Relations between individuals involved in the bug management process
 – Who reports? → Who triages it? → Who fixes it?
Our goal

- To better understand the impact of the relations between the individuals on the efficiency of the bug management process
 - Impact of the time to assign bug fixing tasks
 - Impact on the time to fix bugs

Bug reported

UNCONFIRMED

NEW

ASSIGNED

FIXED

RESOLVED

Time to assign a bug ($T_{assignment}$)

Time to fix a bug ($T_{bug-fix}$)
Pilot study (1)
Eclipse Platform and JDT

• RQ1: Does the time to assign a bug fixing task depend on the fact that the same developer reports a bug and triages it?

When a triager reports a bug, the average time of assignments is about 17–47% faster (2.6 days in Platform and 9.4 days in JDT)

• Result

<table>
<thead>
<tr>
<th>project</th>
<th>Reporter = Triager?</th>
<th># of reports</th>
<th>ratio</th>
<th>average days</th>
<th>median days</th>
<th>SD</th>
<th>max days</th>
<th>min days</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>yes</td>
<td>1,000</td>
<td>24.2%</td>
<td>12.6</td>
<td>0.0</td>
<td>66.8</td>
<td>812.1</td>
<td>0.0</td>
<td>< 0.01 **</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>3,133</td>
<td>75.8%</td>
<td>15.2</td>
<td>0.5</td>
<td>68.9</td>
<td>842.9</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>JDT</td>
<td>yes</td>
<td>452</td>
<td>27.3%</td>
<td>10.6</td>
<td>0.0</td>
<td>57.8</td>
<td>713.7</td>
<td>0.0</td>
<td>< 0.01 **</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>1,205</td>
<td>72.7%</td>
<td>20.0</td>
<td>0.5</td>
<td>79.6</td>
<td>927.0</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
Pilot study (2)
Eclipse Platform and JDT

- **RQ2**: *Does the time to fix a bug depend on the fact that the same developer triages a bug and fixes it?*

The average time of bug fixing by triagers was about two times faster (23.8 days in Platform and 10.2 days in JDT)

- **Result**

<table>
<thead>
<tr>
<th>project</th>
<th>Triager = Fixer?</th>
<th># of reports</th>
<th>ratio</th>
<th>average days</th>
<th>median days</th>
<th>SD</th>
<th>max days</th>
<th>min days</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform</td>
<td>yes</td>
<td>2,294</td>
<td>55.5%</td>
<td>23.1</td>
<td>1.2</td>
<td>65.3</td>
<td>776.0</td>
<td>0.0</td>
<td>< 0.01 **</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>1,839</td>
<td>44.5%</td>
<td>46.9</td>
<td>5.9</td>
<td>111.1</td>
<td>988.2</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>JDT</td>
<td>yes</td>
<td>817</td>
<td>49.3%</td>
<td>12.6</td>
<td>0.8</td>
<td>42.9</td>
<td>583.1</td>
<td>0.0</td>
<td>< 0.01 **</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>840</td>
<td>50.7%</td>
<td>22.8</td>
<td>1.3</td>
<td>62.8</td>
<td>705.9</td>
<td>0.0</td>
<td></td>
</tr>
</tbody>
</table>
Bug Management Patterns

Reporter=Triager=Fixer (R=T=F)
One contributor plays all of the roles.

- **Reporter=Triager=Fixer (R=T=F)**
 - Reporter: A
 - Triager: A
 - Fixer: A

- **RESOLVED**

Reporter ≠ Triager=Fixer (R≠T=F)
One contributor serves as triager and fixer.

- **Reporter ≠ Triager=Fixer (R≠T=F)**
 - Reporter: A
 - Triager: A
 - Fixer: B

- **RESOLVED**

Reporter=Triager ≠ Fixer (R=T≠F)
One contributor asks another contributor to fix a bug.

- **Reporter=Triager ≠ Fixer (R=T≠F)**
 - Reporter: A
 - Triager: A
 - Fixer: B

- **RESOLVED**

Reporter ≠ Triager ≠ Fixer (R≠T≠F)
Each contributor has a different role from others.

- **Reporter ≠ Triager ≠ Fixer (R≠T≠F)**
 - Reporter: A
 - Triager: B
 - Fixer: C

- **RESOLVED**

2012/09/26 The Impact of Bug Management Patterns @ ICSM2012
Pattern #1

- Pattern #1 is assumed to make bug fixing faster.
 - He likely knows the bug source.
 - He likely has good confidence in his ability.
Pattern #2

- From our pilot study (RQ1), Pattern #2 can be assumed to make the bug assignment faster, but bug fix may be slower.
Pattern #3

- Reporter=Triager=Fixer (R=T=F)
 - One contributor plays all of the roles.

- Reporter\neq Triager=Fixer (R\neq T=F)
 - One contributor serves as triager and fixer.

- Reporter=Triager\neq Fixer (R=T\neq F)
 - Each contributor has a different role from others.

- Reporter\neq Triager\neq Fixer (R\neq T\neq F)

- Pattern #3 would make bug fixing itself faster if (B) has a good understanding of the bug reported by (A).
- otherwise it would make bug fixing difficult, because (B) has to spend the time to investigate the bug.
Pattern #4

• This pattern is assumed to make both the bug assignment and bug fixing most difficult
• The mismatches of knowledge and skills between them would be larger than the other patterns.
Case study on bug management patterns
Eclipse Platform and JDT

- **Data sets** (also used in the pilot study)
 - fixed bug reports from 2007 to 2009 (*)
 - Eclipse Platform: 4,133 reports
 - 811 reporters, 54 triagers and 85 fixers
 - Eclipse JDT: 1,657 reports
 - 369 reporters, 23 triagers and 33 fixers
 - The ratio of #3 and #4 are almost same and large (i.e., important patterns for the bug management process)

<table>
<thead>
<tr>
<th>project</th>
<th>pattern</th>
<th>ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R=T=F</td>
<td>17% (719/4,133)</td>
</tr>
<tr>
<td></td>
<td>R=T≠F</td>
<td>7% (281/4,133)</td>
</tr>
<tr>
<td>Platform</td>
<td>R≠T=F</td>
<td>38% (1,575/4,133)</td>
</tr>
<tr>
<td></td>
<td>R≠T≠F</td>
<td>38% (1,558/4,133)</td>
</tr>
<tr>
<td></td>
<td>R=T=F</td>
<td>14% (241/1,657)</td>
</tr>
<tr>
<td></td>
<td>R=T≠F</td>
<td>13% (211/1,657)</td>
</tr>
<tr>
<td>JDT</td>
<td>R≠T=F</td>
<td>35% (576/1,657)</td>
</tr>
<tr>
<td></td>
<td>R≠T≠F</td>
<td>38% (629/1,657)</td>
</tr>
</tbody>
</table>
Case study (1)
Bug management patterns in Eclipse Platform and JDT

- RQ3: How do the bug management patterns impact the time to complete bug assignments?

One contributor plays all of the roles.

One contributor serves as triager and fixer.

One contributor asks another contributor to fix a bug.

Each contributor has a different role from others.
• Result

![Box plots showing time assignment for different roles and platforms.](image)

- **Reporter=Triager=Fixer (R=T=F)**
 - One contributor plays all of the roles.

- **Reporter ≠ Triager=Fixer (R≠T=F)**
 - One contributor serves as triager and fixer.

- **Reporter=Triager ≠ Fixer (R=T≠F)**
 - One contributor asks another contributor to fix a bug.

- **Reporter ≠ Triager ≠ Fixer (R≠T≠F)**
 - Each contributor has a different role from others.

Platform

- **JDT**
• Result

```
Platform

JDT
```

```
Ratio of assigned bug

Ratio of assigned bug

days (log scale)

days (log scale)

R=T=F
R=T≠F
R≠T=F
R≠T≠F

R=T=F
R=T≠F
R≠T=F
R≠T≠F
```
Case study (2)
Bug management patterns in Eclipse Platform and JDT

- RQ4: *How do the bug management patterns impact the time to fix bugs?*

```plaintext
Reporter=Triager=Fixer (R=T=F)
One contributor plays all of the roles.

Reporter ≠ Triager=Fixer (R≠T=F)
One contributor serves as triager and fixer.

Reporter=Triager ≠ Fixer (R=T≠F)
One contributor asks another contributor to fix a bug.

Reporter ≠ Triager ≠ Fixer (R≠T≠F)
Each contributor has a different role from others.
```
• Result
• Result

Platform

<table>
<thead>
<tr>
<th>Days (log scale)</th>
<th>Ratio of fixed bugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td>1000</td>
<td>0.0</td>
</tr>
</tbody>
</table>

JDT

<table>
<thead>
<tr>
<th>Days (log scale)</th>
<th>Ratio of fixed bugs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
</tr>
<tr>
<td>100</td>
<td>0.0</td>
</tr>
<tr>
<td>1000</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Diagram descriptions:
- Reporter=Triager=Fixer (R=T=F): One contributor plays all of the roles.
- Reporter≠Triager=Fixer (R≠T=F): One contributor serves as triager and fixer.
- Reporter=Triager≠Fixer (R=T≠F): One contributor asks another contributor to fix.
- Reporter≠Triager≠Fixer (R≠T≠F): Each contributor has a different role from others.
Discussions (1)
Summary of our findings

RQ1
When a triager makes a bug report as a reporter, the time to assign a bug fixing task is 17–47% faster than a regular reporter.

Task Assignment

RQ2
When a triager assigns a bug fixing task to himself, he can fix the bug around two times faster than other developers.

Bug Fix

RQ3
Surprisingly when the triager assigns a task to himself, he needs 48%–58% longer time for the assignment than when he assigns it to other developers.

RQ4
The pattern [R≠T≠F] exhibits the worst performance in bug fixing.
• The boxplot of \([R\neq T\neq F]\) had the widest distribution.
 – This implies that in some cases the pattern works better than other patterns.
Discussions (2)
The impact of discussions among developers

- Discussions about bugs before bug report assignment made a difference in the bug-fixing performance.
Discussions (3)
Other factors that would impact the time to fix

- There are many other factors that would impact the time to fix bugs.

<table>
<thead>
<tr>
<th>factor</th>
<th>metrics (variable name)</th>
<th>scale</th>
<th>descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>bug</td>
<td>Component</td>
<td>nominal</td>
<td>component name specified in the bug report</td>
</tr>
<tr>
<td></td>
<td>Priority</td>
<td>nominal</td>
<td>priority for fixing the bug</td>
</tr>
<tr>
<td></td>
<td>Severity</td>
<td>nominal</td>
<td>severity of the reported bug</td>
</tr>
<tr>
<td></td>
<td>Milestone</td>
<td>nominal</td>
<td>whether or not a milestone is specified in the bug report</td>
</tr>
<tr>
<td></td>
<td>DescriptionWords</td>
<td>interval</td>
<td>number of words in “Description” in the bug report</td>
</tr>
<tr>
<td></td>
<td>CommentsCount</td>
<td>interval</td>
<td>number of comments in the bug report</td>
</tr>
<tr>
<td></td>
<td>CommentsWords</td>
<td>interval</td>
<td>number of words in comments</td>
</tr>
<tr>
<td></td>
<td>AttachmentsCount</td>
<td>interval</td>
<td>number of attachments (e.g., patches and screen shots)</td>
</tr>
<tr>
<td></td>
<td>DependsOnCount</td>
<td>interval</td>
<td>number of bugs which must be resolved before the reported bug</td>
</tr>
<tr>
<td></td>
<td>BlocksCount</td>
<td>interval</td>
<td>number of other bugs which are blocked by the reported bug</td>
</tr>
<tr>
<td></td>
<td>CCCount</td>
<td>interval</td>
<td>number of users who might be interested in the bug report</td>
</tr>
<tr>
<td>day and time</td>
<td>AssignTime</td>
<td>interval</td>
<td>time to assign the bug fixing task to a developer (i.e., $T_{assignment}$)</td>
</tr>
<tr>
<td></td>
<td>AssignedMonth</td>
<td>interval</td>
<td>month in which the bug fixing task was assigned to a developer</td>
</tr>
<tr>
<td></td>
<td>AssignedDay</td>
<td>interval</td>
<td>day in which the bug fixing task was assigned to a developer</td>
</tr>
<tr>
<td></td>
<td>AssignedWeekEnd</td>
<td>nominal</td>
<td>whether or not the bug fixing task was assigned in the weekend</td>
</tr>
<tr>
<td>stakeholder</td>
<td>Reporter</td>
<td>nominal</td>
<td>email address of the reporter (who reports the bug)</td>
</tr>
<tr>
<td></td>
<td>Triager</td>
<td>nominal</td>
<td>email address of the triager (who triages the bug)</td>
</tr>
<tr>
<td></td>
<td>Fixer</td>
<td>nominal</td>
<td>email address of the fixer (who resolves the bug)</td>
</tr>
<tr>
<td></td>
<td>Pattern</td>
<td>nominal</td>
<td>bug management pattern used in fixing the bug (main scope of this paper)</td>
</tr>
</tbody>
</table>
Discussions (3)
Other factors that would impact the time to fix

- We analyzed which metrics contributed to our prediction (logistic regression) model.

<table>
<thead>
<tr>
<th>factor</th>
<th>metrics</th>
<th>deviance residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(variable name)</td>
<td>60 day</td>
</tr>
<tr>
<td>bug</td>
<td>Component</td>
<td>263.06</td>
</tr>
<tr>
<td></td>
<td>Priority</td>
<td>9.22</td>
</tr>
<tr>
<td></td>
<td>Severity</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>Milestone</td>
<td>6.31</td>
</tr>
<tr>
<td></td>
<td>DescriptionWords</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>CommentsCount</td>
<td>3.39</td>
</tr>
<tr>
<td></td>
<td>CommentsWords</td>
<td>4.56</td>
</tr>
<tr>
<td></td>
<td>AttachmentsCount</td>
<td>3.84</td>
</tr>
<tr>
<td></td>
<td>DependsOnCount</td>
<td>6.26</td>
</tr>
<tr>
<td></td>
<td>BlocksCount</td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>CCCount</td>
<td>12.08</td>
</tr>
<tr>
<td>day and time</td>
<td>AssignTime</td>
<td>4.71</td>
</tr>
<tr>
<td></td>
<td>AssignedMonth</td>
<td>9.87</td>
</tr>
<tr>
<td></td>
<td>AssignedDay</td>
<td>0.61</td>
</tr>
<tr>
<td></td>
<td>AssignedWeekEnd</td>
<td>0.10</td>
</tr>
<tr>
<td>stakeholder</td>
<td>Reporter</td>
<td>7.23</td>
</tr>
<tr>
<td></td>
<td>Target</td>
<td>8.69</td>
</tr>
<tr>
<td></td>
<td>Fixer</td>
<td>76.26</td>
</tr>
<tr>
<td></td>
<td>Pattern</td>
<td>154.49</td>
</tr>
</tbody>
</table>
Discussions
Threats to Validity

• Only three years (from 2007 to 2009) bug report data without reassignments
 – Such data selection might bring bias against the complete picture of open source development

• Only the two open source projects
 – The Eclipse projects is large enough, but they have developers who are fully employed by IBM
 – The user base of the Eclipse products is different from that of other products such as Mozilla
Conclusion and future work

• A need for better ways to communicate and share knowledge between the different individuals.
 – In cases where all roles were played by different individuals, the efficiency of the bug fixing was negatively impacted.
 – Communication appears to have a positive impact on speeding up bug fixing time even when every role is played by different individuals.

• Our future work includes investigating other projects and other factors (e.g., complexity of bugs).
Questions?

- Email: masao@sys.wakayama-u.ac.jp
- HP: http://oss.sys.wakayama-u.ac.jp
Discussions
Other factors that would impact the time to fix

• We created a prediction model based on logistic regression to quantify the relationships between the factors.
 – All the F1-values of our results also perform the result which is predicted by using randomly selected independent variable.

<table>
<thead>
<tr>
<th>prediction accuracy of our logistic regression model</th>
<th>prediction period</th>
<th>precision</th>
<th>recall</th>
<th>F1-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a day</td>
<td>68.14</td>
<td>38.22</td>
<td>48.97</td>
<td></td>
</tr>
<tr>
<td>in a weak</td>
<td>67.90</td>
<td>76.66</td>
<td>72.02</td>
<td></td>
</tr>
<tr>
<td>in a month</td>
<td>76.67</td>
<td>98.77</td>
<td>86.33</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>improvement rate against random prediction</th>
<th>prediction period</th>
<th>precision</th>
<th>recall</th>
<th>F1-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>in a day</td>
<td>66.68%</td>
<td>-6.50%</td>
<td>19.80%</td>
<td></td>
</tr>
<tr>
<td>in a week</td>
<td>14.22%</td>
<td>28.95%</td>
<td>21.14%</td>
<td></td>
</tr>
<tr>
<td>in a month</td>
<td>2.35%</td>
<td>31.86%</td>
<td>15.24%</td>
<td></td>
</tr>
</tbody>
</table>
Our focus:
Relations between the individuals

• The triager plays a very important role in the bug management process

• The triager needs to
 – have a good understanding of the bug report
 – assign the bug fixing task to the most appropriate developer who can fix the bug as quickly as possible